Physics

Watch the videos below:


5. Calculate the frequency (f) for that wavelength and record it in” rel=”nofollow”>in the table below. Remember that c=λf, where c is the speed of light (3 * 10^8 m/s).
6. Calculate the Energy (E) in” rel=”nofollow”>in joules for that wavelength and record it in” rel=”nofollow”>in the table below. Remember that E = hf, where h the Planck constant (6.6 *10^-34 j*s)
7. Complete the Energy (E) in” rel=”nofollow”>in electro-volt (ev) and record it in” rel=”nofollow”>in the table below.
1 electron-volt (eV) = 1.6 X 10-19 J
8. Repeat the above step for each of the metals under the pull down menu.
Metal Wavelength λ
(nm) Frequency f
(Hz) Energy E
(J) Energy
(eV)
Sodium
Zin” rel=”nofollow”>inc
Copper
Platin” rel=”nofollow”>inum
Calcium

9. The min” rel=”nofollow”>inimum frequency of a photon that can eject an electron from a surface is called the threshold frequency, ft. What is the threshold frequency, ft, for each of the metals?
HINT: revisit in” rel=”nofollow”>instructions 3 & 4.

Metal Threshold Frequency ft (Hz)
Sodium
Zin” rel=”nofollow”>inc
Copper
Platin” rel=”nofollow”>inum
Calcium

10. The min” rel=”nofollow”>inimum amount of energy required for an electron to escape from a metal is called the work function (W) and is given by the equation W = hft. What is the work function for each of the
metals in” rel=”nofollow”>in joules and electron-volts? HINT: revisit in” rel=”nofollow”>instructions 3 to 6.

Metal Work Function E
(J) Work Function E
(eV)
Sodium
Zin” rel=”nofollow”>inc
Copper
Platin” rel=”nofollow”>inum
Platin” rel=”nofollow”>inum
Calcium

11. Make the followin” rel=”nofollow”>ing additional adjustments to the simulation.
• Check the box “current vs. light in” rel=”nofollow”>intensity”.
• Check the box “electron energy vs. frequency”
• Select the Sodium.
• Use violet light (about 400 nm).
• Vary the in” rel=”nofollow”>intensity of the light and observe any changes in” rel=”nofollow”>in the number of ejected electrons.

12. What’s the relationship between the in” rel=”nofollow”>intensity of the in” rel=”nofollow”>incident light and the number of the ejected electrons?
13. What’s the relationship between the in” rel=”nofollow”>intensity of the in” rel=”nofollow”>incident light and the energy of the ejected electrons?

find the cost of your paper