No More Worries!

image Our orders are delivered strictly on time without delay

Paper Formatting

  • Double or single-spaced
  • 1-inch margin
  • 12 Font Arial or Times New Roman
  • 300 words per page

No Lateness!

image Our orders are delivered strictly on time without delay

Our Guarantees


  • Free Unlimited revisions
  • Guaranteed Privacy
  • Money Return guarantee
  • Plagiarism Free Writing

Enhancing Quality and Safety

• For this assessment, you will develop a 4 page paper that examines a safety quality issue pertaining to medication administration in a health care setting. You will analyze the issue and examine potential evidence-based and best-practice solutions from the literature as well as the role of nurses and other stakeholders in addressing the issue.
Health care organizations and professionals strive to create safe environments for patients; however, due to the complexity of the health care system, maintaining safety can be a challenge. Since nurses comprise the largest group of health care professionals, a great deal of responsibility falls in the hands of practicing nurses. Quality improvement (QI) measures and safety improvement plans are effective interventions to reduce medical errors and sentinel events such as medication errors, falls, infections, and deaths. A 2000 Institute of Medicine (IOM) report indicated that almost one million people are harmed annually in the United States, (Kohn et al., 2000) and 210,000–440,000 die as a result of medical errors (Allen, 2013).
The role of the baccalaureate nurse includes identifying and explaining specific patient risk factors, incorporating evidence-based solutions to improving patient safety and coordinating care. A solid foundation of knowledge and understanding of safety organizations such as Quality and Safety Education for Nurses (QSEN), the Institute of Medicine (IOM), and The Joint Commission and its National Patient Safety Goals (NPSGs) program is vital to practicing nurses with regard to providing and promoting safe and effective patient care.
You are encouraged to complete the Identifying Safety Risks and Solutions activity. This activity offers an opportunity to review a case study and practice identifying safety risks and possible

Sample Solution

eurofilament mRNAs are selectively reduced in diabetic rats and alterations on post-translational modification of NF proteins have been detected. A reduction of myelinated fiber size is correlated with axonal NFs loss in peripheral nerves of STZ-induced diabetic rats (25, 26), and mRNAs levels encoding for NF-L and NF-H are reduced in the same animal model of diabetes (7). Moreover, changes on the expression of several NF-associated protein kinases isoforms may also contribute to diabetes-induced changes (4). Several protein kinases regulate NF phosphorylation status, being NFs hyperphosphorylation a hallmark of several neurodegenerative diseases. Abnormal NF phosphorylation has been described in sensory neurons of animal models of type 1 diabetes (27). Moreover, in the spinal cord of diabetic rats there is increased phosphorylation of NF-H, (28). Additionally, changes on the activity of Cdk5 and GSK-3β kinases have been described to alter the phosphorylation status of NFs in an animal model of type 1 diabetes. Specifically, in dorsal root ganglion neuronsincreased phosphorylation of GSK-3β correlated linearly with increased phosphorylation of NF-H, while decreasing activity of Cdk5 is associated with reduced phosphorylation of NF-M, which may result in progressive deficits of axonal function (29). Microfilaments Microfilaments (or actin filaments) are the thinnest filaments of the cytoskeleton, having 6 nm in diameter, providing both stability and dynamics to neurons. In neurons, actin filaments are packed into networks and stabilized by interacting proteins (22). Microfilaments play a role in spine formation and spine volume stabilization (30), with the dynamics of actin leading to the formation of new synapses as well as increased cell communication. The actin cytoskeleton controls several cellular processes. In animal models of diabetes there is an impairment of slow axonal transport of cytoskeletal elements like tubulin and NF proteins (slow component a), and polypeptides such as actin (slow component b) (31-33). Actin undergoes glycation in the brain of STZ-induced diabetic rats and the appearance of glycated actin is prevented by administration of insulin (9, 34). More recently, it was investigated if the receptor for advanced glycation end-product (RAGE) is involved in axonal transport impairment via interaction with its cytoplasmic domain binding partner mDia1, which is involved in actin structure modifications. Slow axonal transport in the peripheral nerves is indeed affected by diabetes, but in a RAGE-independent manner (35). Moreover, mDia1 axonal transport is impaired, suggesting that diabetes-induced changes affecting actin binding proteins are early events in the course of the pathology (35), and forward the hypothesis that mDia1 axonal transport impairment might be correlated with the extent of actin glycation (34).

Price Calculator

Single spaced
approx 275 words per page
Total Cost:

12% Discount


  • Research Paper Writing
  • Essay Writing
  • Dissertation Writing
  • Thesis Writing

Why Choose Us


  • Money Return guarantee
  • Guaranteed Privacy
  • Written by Professionals
  • Paper Written from Scratch
  • Timely Deliveries
  • Free Amendments