Mathematical problem
1. (3 poin" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">ints each) Fin" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">ind the values of p for which the followin" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">ing in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">integrals converge.
a) dx
x(ln x)
p 1
2
∫ b) dx
x(ln x)
p 2
∞
∫
2. (3 poin" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">ints) Determin" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">ine whether dx
ex + e− x −∞
∞
∫ converges or diverges. If it converges, fin" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">ind
what it converges to.
3. Consider ln x dx
1
5
∫ . Use Es ≤
K(b − a)
5
180n
4 .
a) (3 poin" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">ints)
Give the maximun error bound for usin" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">ing Simpson’s Rule to evaluate this in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">integral for
n = 6.
b) (2 poin" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">ints) How large must n be so that the Simpson’s Rule estimate is accurate within" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in 0.001?
4. (3 poin" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">ints) Use Euler’s Method with step size 0.5 to estimate y(2), where y(x) is the
solution to the in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">inial value problem y' = x + xy y(0) = 1.
5. (3 poin" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">ints) A population grows at a rate that is proportional to its population. In 2008
(t = 0) , there were 20,000 people present, In 2014, there were 25,000 people present.
Write an in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">initial value problem for this situation, solve it, and estimate the population
in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in" rel="nofollow">in 2015.